Probability & Statistics Ch.2 Section 1 Question 6

· Mohammad-Ali Bandzar

Solutions for “Probability and Statistics: The Science of Uncertainty” (Second Edition). These are solutions I have come up with; I offer no guarantee of accuracy.

Question

Let S={1,2,3,4}S=\{1,2,3,4\}, X=I{1,2}X=\textit{I}_{\{1,2\}}, Y=I{2,3}Y=\textit{I}_{\{2,3\}}, Z=I{3,4}Z=\textit{I}_{\{3,4\}}. Let W=X+Y+ZW=X+Y+Z.

a) Compute W(1)W(1) b) Compute W(2)W(2) c) Compute W(4)W(4) d) Determine whether or not WZW \geq Z

Solution

(a) Compute W(1)W(1)

W(1)=X(1)+Y(1)+Z(1)=1+0+0=1W(1)=X(1)+Y(1)+Z(1) = 1+0+0 = 1

(b) Compute W(2)W(2)

W(2)=X(2)+Y(2)+Z(2)=1+1+0=2W(2)=X(2)+Y(2)+Z(2) = 1+1+0 = 2

(c) Compute W(4)W(4)

W(4)=X(4)+Y(4)+Z(4)=0+0+1=1W(4)=X(4)+Y(4)+Z(4) = 0+0+1 = 1

(d) Determine whether or not WZW \geq Z

First, we compute W(3)W(3) so we know its value for our entire sample space:

W(3)=X(3)+Y(3)+Z(3)=0+1+1=2W(3)=X(3)+Y(3)+Z(3) = 0+1+1 = 2

Now we compare W to Z for every element in our sample space:

  • W(1)Z(1)10W(1) \geq Z(1) \rightarrow 1 \geq 0 ✓ True
  • W(2)Z(2)20W(2) \geq Z(2) \rightarrow 2 \geq 0 ✓ True
  • W(3)Z(3)21W(3) \geq Z(3) \rightarrow 2 \geq 1 ✓ True
  • W(4)Z(4)11W(4) \geq Z(4) \rightarrow 1 \geq 1 ✓ True

Since our relation holds true for all elements of our sample space, the relation is True.

Alternatively, we could have concluded that the range of W is [1,2][1,2] and the range of Z is [0,1][0,1], therefore WZW \geq Z.