Probability & Statistics Ch.2 Section 2 Question 4

· Mohammad-Ali Bandzar

Solutions for “Probability and Statistics: The Science of Uncertainty” (Second Edition). These are solutions I have come up with; I offer no guarantee of accuracy.

Question

Suppose we roll one fair six-sided die, and let Z be the number showing. Let W=Z3+4W = Z^3 + 4, and let V=ZV = \sqrt{Z}.

a) Compute P(W=w)P(W = w) for every real number w b) Compute P(V=v)P(V = v) for every real number v c) Compute P(ZW=x)P(ZW = x) for every real number x d) Compute P(VW=y)P(VW = y) for every real number y e) Compute P(V+W=r)P(V + W = r) for every real number r

Solution

(a) Compute P(W=w)P(W = w) for every real number w

For each value of Z:

  • Z=1Z=1: W(1)=13+4=5W(1) = 1^3 + 4 = 5, so P(W=5)=16P(W=5) = \frac{1}{6}
  • Z=2Z=2: W(2)=23+4=12W(2) = 2^3 + 4 = 12, so P(W=12)=16P(W=12) = \frac{1}{6}
  • Z=3Z=3: W(3)=33+4=31W(3) = 3^3 + 4 = 31, so P(W=31)=16P(W=31) = \frac{1}{6}
  • Z=4Z=4: W(4)=43+4=68W(4) = 4^3 + 4 = 68, so P(W=68)=16P(W=68) = \frac{1}{6}
  • Z=5Z=5: W(5)=53+4=129W(5) = 5^3 + 4 = 129, so P(W=129)=16P(W=129) = \frac{1}{6}
  • Z=6Z=6: W(6)=63+4=220W(6) = 6^3 + 4 = 220, so P(W=220)=16P(W=220) = \frac{1}{6}

P(W=w)=0P(W=w)=0 for w{5,12,31,68,129,220}w\notin \{5,12,31,68,129,220\}

(b) Compute P(V=v)P(V = v) for every real number v

  • V(1)=1=1V(1) = \sqrt{1} = 1, so P(V=1)=16P(V=1) = \frac{1}{6}
  • V(2)=2V(2) = \sqrt{2}, so P(V=2)=16P(V=\sqrt{2}) = \frac{1}{6}
  • V(3)=3V(3) = \sqrt{3}, so P(V=3)=16P(V=\sqrt{3}) = \frac{1}{6}
  • V(4)=4=2V(4) = \sqrt{4} = 2, so P(V=2)=16P(V=2) = \frac{1}{6}
  • V(5)=5V(5) = \sqrt{5}, so P(V=5)=16P(V=\sqrt{5}) = \frac{1}{6}
  • V(6)=6V(6) = \sqrt{6}, so P(V=6)=16P(V=\sqrt{6}) = \frac{1}{6}

P(V=v)=0P(V=v)=0 for v{1,2,3,2,5,6}v\notin \{1,\sqrt{2},\sqrt{3},2,\sqrt{5},\sqrt{6}\}

(c) Compute P(ZW=x)P(ZW = x) for every real number x

  • ZW(1)=1×5=5ZW(1) = 1 \times 5 = 5, so P(ZW=5)=16P(ZW=5) = \frac{1}{6}
  • ZW(2)=2×12=24ZW(2) = 2 \times 12 = 24, so P(ZW=24)=16P(ZW=24) = \frac{1}{6}
  • ZW(3)=3×31=93ZW(3) = 3 \times 31 = 93, so P(ZW=93)=16P(ZW=93) = \frac{1}{6}
  • ZW(4)=4×68=272ZW(4) = 4 \times 68 = 272, so P(ZW=272)=16P(ZW=272) = \frac{1}{6}
  • ZW(5)=5×129=645ZW(5) = 5 \times 129 = 645, so P(ZW=645)=16P(ZW=645) = \frac{1}{6}
  • ZW(6)=6×220=1320ZW(6) = 6 \times 220 = 1320, so P(ZW=1320)=16P(ZW=1320) = \frac{1}{6}

P(ZW=x)=0P(ZW=x)=0 for x{5,24,93,272,645,1320}x\notin \{5,24,93,272,645,1320\}

(d) Compute P(VW=y)P(VW = y) for every real number y

  • VW(1)=1×5=5VW(1) = 1 \times 5 = 5, so P(VW=5)=16P(VW=5) = \frac{1}{6}
  • VW(2)=2×12=122VW(2) = \sqrt{2} \times 12 = 12\sqrt{2}, so P(VW=122)=16P(VW=12\sqrt{2}) = \frac{1}{6}
  • VW(3)=3×31=313VW(3) = \sqrt{3} \times 31 = 31\sqrt{3}, so P(VW=313)=16P(VW=31\sqrt{3}) = \frac{1}{6}
  • VW(4)=2×68=136VW(4) = 2 \times 68 = 136, so P(VW=136)=16P(VW=136) = \frac{1}{6}
  • VW(5)=5×129=1295VW(5) = \sqrt{5} \times 129 = 129\sqrt{5}, so P(VW=1295)=16P(VW=129\sqrt{5}) = \frac{1}{6}
  • VW(6)=6×220=2206VW(6) = \sqrt{6} \times 220 = 220\sqrt{6}, so P(VW=2206)=16P(VW=220\sqrt{6}) = \frac{1}{6}

P(VW=y)=0P(VW=y)=0 for y{5,122,313,136,1295,2206}y\notin \{5,12\sqrt{2},31\sqrt{3},136,129\sqrt{5},220\sqrt{6}\}

(e) Compute P(V+W=r)P(V + W = r) for every real number r

  • V(1)+W(1)=1+5=6V(1)+W(1) = 1 + 5 = 6, so P(V+W=6)=16P(V+W=6) = \frac{1}{6}
  • V(2)+W(2)=2+12V(2)+W(2) = \sqrt{2} + 12, so P(V+W=2+12)=16P(V+W=\sqrt{2}+12) = \frac{1}{6}
  • V(3)+W(3)=3+31V(3)+W(3) = \sqrt{3} + 31, so P(V+W=3+31)=16P(V+W=\sqrt{3}+31) = \frac{1}{6}
  • V(4)+W(4)=2+68=70V(4)+W(4) = 2 + 68 = 70, so P(V+W=70)=16P(V+W=70) = \frac{1}{6}
  • V(5)+W(5)=5+129V(5)+W(5) = \sqrt{5} + 129, so P(V+W=5+129)=16P(V+W=\sqrt{5}+129) = \frac{1}{6}
  • V(6)+W(6)=6+220V(6)+W(6) = \sqrt{6} + 220, so P(V+W=6+220)=16P(V+W=\sqrt{6}+220) = \frac{1}{6}

P(V+W=r)=0P(V+W=r)=0 for r{6,2+12,3+31,70,5+129,6+220}r\notin \{6,\sqrt{2}+12,\sqrt{3}+31,70,\sqrt{5}+129,\sqrt{6}+220\}