Probability & Statistics Ch.2 Section 3 Question 8

· Mohammad-Ali Bandzar

Solutions for “Probability and Statistics: The Science of Uncertainty” (Second Edition). These are solutions I have come up with; I offer no guarantee of accuracy.

Question

Let WPoisson(λ)W \sim \text{Poisson}(\lambda). For what value of λ\lambda is P(W=11)P(W = 11) maximized?

Solution

From Example 2.3.6 in the textbook, we know:

pY(y)=P(Y=y)=λyy!eλp_Y(y) = P(Y=y) = \frac{\lambda^y}{y!}e^{-\lambda}

We plug in w = 11:

P(W=11)=λ1111!eλP(W=11) = \frac{\lambda^{11}}{11!}e^{-\lambda}

We differentiate to locate the peak. Start by factoring the constant:

P(W=11)=111!λ11eλP(W=11) = \frac{1}{11!}\lambda^{11}e^{-\lambda}

Apply the product rule:

ddλP(W=11)=111!(11λ10eλ+λ11(eλ))\frac{d}{d\lambda}P(W=11) = \frac{1}{11!}\left(11\lambda^{10}e^{-\lambda} + \lambda^{11}(-e^{-\lambda})\right)

Factor out eλe^{-\lambda}:

=eλ11!(11λ10λ11)= \frac{e^{-\lambda}}{11!}(11\lambda^{10} - \lambda^{11})

Factor out λ10\lambda^{10}:

=eλ11!λ10(11λ)= \frac{e^{-\lambda}}{11!}\lambda^{10}(11 - \lambda)

Set our factors equal to zero:

  • eλ=0e^{-\lambda} = 0 has no real solutions
  • λ10=0λ=0\lambda^{10} = 0 \Rightarrow \lambda = 0
  • 11λ=0λ=1111 - \lambda = 0 \Rightarrow \lambda = 11

By the definition of Poisson distribution (Example 2.3.6), λ>0\lambda > 0, so λ=0\lambda = 0 is not valid.

Therefore: λ=11\lambda = 11