Probability & Statistics Ch.2 Section 4 Question 1

· Mohammad-Ali Bandzar

Solutions for “Probability and Statistics: The Science of Uncertainty” (Second Edition). These are solutions I have come up with; I offer no guarantee of accuracy.

Question

UUniform[0,1]U \sim \text{Uniform}[0, 1]. Compute each of the following:

  • a) P(U0)P(U \leq 0)
  • b) P(U=12)P(U = \frac{1}{2})
  • c) P(U<13)P(U < -\frac{1}{3})
  • d) P(U23)P(U \leq \frac{2}{3})
  • e) P(U<23)P(U < \frac{2}{3})
  • f) P(U<1)P(U < 1)
  • g) P(U17)P(U \leq 17)

Solution

From Example 2.4.3 in the textbook:

f(x)={1RLLxR0otherwisef(x) = \begin{cases}\frac{1}{R-L} & L \leq x \leq R \\ 0 & \text{otherwise}\end{cases}

In this case R = 1, L = 0, so the density is 1 on [0,1] and 0 elsewhere.

(a) P(U0)P(U \leq 0)

The probability equals the area of a rectangle where U0U \leq 0. The base is 00=00 - 0 = 0.

P(U0)=0P(U \leq 0) = 0

(b) P(U=12)P(U = \frac{1}{2})

By Definition 2.4.1: “A random variable X is continuous if P(X=x)=0P(X=x)=0 for all xRx \in \mathbb{R}.”

Since uniform distribution is continuous:

P(U=12)=0P(U = \frac{1}{2}) = 0

(c) P(U<13)P(U < -\frac{1}{3})

The height is zero since f(x)=0f(x)=0 for all x(,13]x \in (-\infty, -\frac{1}{3}].

P(U<13)=0P(U < -\frac{1}{3}) = 0

(d) P(U23)P(U \leq \frac{2}{3})

Base = intersection of (,23][0,1]=[0,23](-\infty, \frac{2}{3}] \cap [0,1] = [0, \frac{2}{3}], so length = 23\frac{2}{3}

Height = 110=1\frac{1}{1-0} = 1

P(U23)=23×1=23P(U \leq \frac{2}{3}) = \frac{2}{3} \times 1 = \frac{2}{3}

(e) P(U<23)P(U < \frac{2}{3})

Base = intersection of (,23)[0,1]=[0,23)(-\infty, \frac{2}{3}) \cap [0,1] = [0, \frac{2}{3}), length = 23\frac{2}{3}

Height = 1

P(U<23)=23P(U < \frac{2}{3}) = \frac{2}{3}

(f) P(U<1)P(U < 1)

Base = intersection of (,1)[0,1]=[0,1)(-\infty, 1) \cap [0,1] = [0, 1), length = 1

Height = 1

P(U<1)=1P(U < 1) = 1

(g) P(U17)P(U \leq 17)

Base = intersection of (,17][0,1]=[0,1](-\infty, 17] \cap [0,1] = [0, 1], length = 1

Height = 1

P(U17)=1P(U \leq 17) = 1