Probability & Statistics Ch.2 Section 4 Question 2

· Mohammad-Ali Bandzar

Solutions for “Probability and Statistics: The Science of Uncertainty” (Second Edition). These are solutions I have come up with; I offer no guarantee of accuracy.

Question

WUniform[1,4]W \sim \text{Uniform}[1, 4]. Compute each of the following:

  • a) P(W5)P(W \geq 5)
  • b) P(W2)P(W \geq 2)
  • c) P(W29)P(W^2 \geq 9)
  • d) P(W22)P(W^2 \leq 2)

Solution

From Example 2.4.3 in the textbook:

f(x)={1RLLxR0otherwisef(x) = \begin{cases}\frac{1}{R-L} & L \leq x \leq R \\ 0 & \text{otherwise}\end{cases}

In this case R = 4, L = 1, so the density is 13\frac{1}{3} on [1,4] and 0 elsewhere.

(a) P(W5)P(W \geq 5)

Base = intersection of [5,)[1,4]=[5, \infty) \cap [1,4] = \emptyset

Since none of our function’s domain intersects with the uniform distribution domain:

P(W5)=0P(W \geq 5) = 0

(b) P(W2)P(W \geq 2)

Base = intersection of [2,)[1,4]=[2,4][2, \infty) \cap [1,4] = [2,4], length = 2

Height = 141=13\frac{1}{4-1} = \frac{1}{3}

P(W2)=2×13=23P(W \geq 2) = 2 \times \frac{1}{3} = \frac{2}{3}

(c) P(W29)P(W^2 \geq 9)

If W29W^2 \geq 9, then W3W \geq 3 or W3W \leq -3.

Base = intersection of ((,3][3,))[1,4]=[3,4]((-\infty,-3] \cup [3,\infty)) \cap [1,4] = [3,4], length = 1

Height = 13\frac{1}{3}

P(W29)=1×13=13P(W^2 \geq 9) = 1 \times \frac{1}{3} = \frac{1}{3}

(d) P(W22)P(W^2 \leq 2)

If W22W^2 \leq 2, then 2W2-\sqrt{2} \leq W \leq \sqrt{2}.

Base = intersection of [2,2][1,4]=[1,2][-\sqrt{2}, \sqrt{2}] \cap [1,4] = [1, \sqrt{2}]

Length = 210.4142\sqrt{2} - 1 \approx 0.4142

Height = 13\frac{1}{3}

P(W22)=0.4142×130.138P(W^2 \leq 2) = 0.4142 \times \frac{1}{3} \approx 0.138