Probability & Statistics Ch.2 Section 4 Question 3

· Mohammad-Ali Bandzar

Solutions for “Probability and Statistics: The Science of Uncertainty” (Second Edition). These are solutions I have come up with; I offer no guarantee of accuracy.

Question

Let ZExponential(4)Z \sim \text{Exponential}(4). Compute each of the following:

  • a) P(Z5)P(Z \geq 5)
  • b) P(Z5)P(Z \geq -5)
  • c) P(Z29)P(Z^2 \geq 9)
  • d) P(Z4179)P(Z^4 - 17 \geq 9)

Solution

From Example 2.4.5 in the textbook:

P(Xx)=xλeλzdz=eλxP(X \geq x) = \int_x^{\infty} \lambda e^{-\lambda z} dz = e^{-\lambda x}

In this case λ=4\lambda = 4.

(a) P(Z5)P(Z \geq 5)

P(Z5)=e4×5=e202.06×109P(Z \geq 5) = e^{-4 \times 5} = e^{-20} \approx 2.06 \times 10^{-9}

(b) P(Z5)P(Z \geq -5)

Since Example 2.4.5 says that f(x)=0f(x) = 0 for any x<0x < 0, we take the integral for domain [0,)[0, \infty), which is the same as P(Z0)P(Z \geq 0):

P(Z5)=e4×0=e0=1P(Z \geq -5) = e^{-4 \times 0} = e^0 = 1

(c) P(Z29)P(Z^2 \geq 9)

If Z29Z^2 \geq 9, then Z3Z \geq 3 or Z3Z \leq -3.

For Z3Z \geq 3:

P(Z3)=e126.14×106P(Z \geq 3) = e^{-12} \approx 6.14 \times 10^{-6}

For Z3Z \leq -3: Since the exponential distribution is only defined for x0x \geq 0:

P(Z3)=0P(Z \leq -3) = 0

Total:

P(Z29)=e12+0=e126.14×106P(Z^2 \geq 9) = e^{-12} + 0 = e^{-12} \approx 6.14 \times 10^{-6}

(d) P(Z4179)P(Z^4 - 17 \geq 9)

Z4179Z^4 - 17 \geq 9

Z426Z^4 \geq 26

Z264 or Z264Z \geq \sqrt[4]{26} \text{ or } Z \leq -\sqrt[4]{26}

For Z264Z \geq \sqrt[4]{26}:

P(Z264)=e42640.000119P(Z \geq \sqrt[4]{26}) = e^{-4\sqrt[4]{26}} \approx 0.000119

For Z264Z \leq -\sqrt[4]{26}: Since exponential is only defined for x0x \geq 0:

P(Z264)=0P(Z \leq -\sqrt[4]{26}) = 0

Total:

P(Z4179)=e42640.000119P(Z^4 - 17 \geq 9) = e^{-4\sqrt[4]{26}} \approx 0.000119